
Published in Proc. SC 2002

Asserting Performance Expectations
 Jeffrey S. Vetter Patrick H. Worley

 Center for Applied Scientific Computing Computer Science and Mathematics Division
Lawrence Livermore National Laboratory Oak Ridge National Laboratory
 Livermore, CA 94551 Oak Ridge, TN 37831-6367
 vetter3@llnl.gov worleyph@ornl.gov

Traditional techniques for performance analysis provide a means for extracting and analyzing raw
performance information from applications. Users then compare this raw data to their performance
expectations for application constructs. This comparison can be tedious for the scale of today's architectures
and software systems. To address this situation, we present a methodology and prototype that allows users to
assert performance expectations explicitly in their source code using performance assertions. As the
application executes, each performance assertion in the application collects data implicitly to verify the
assertion. By allowing the user to specify a performance expectation with individual code segments, the
runtime system can jettison raw data for measurements that pass their expectation, while reacting to failures
with a variety of responses. We present several compelling uses of performance assertions with our
operational prototype, including raising a performance exception, validating a performance model, and
adapting an algorithm empirically at runtime.

1 Introduction
Traditional techniques for performance analysis provide a variety of mechanisms for

instrumentation, data collection, and analysis. These techniques, such as tracing
communication activity, sampling hardware counters, and profiling subroutines, allow
users to capture raw data about the performance behaviors of their code. Users can then
reason about and compare this raw data to their performance expectations for individual
application constructs. In most cases, these conventional techniques do not explicitly
provide the capability for a user to plant the expectation directly in his or her application.
This shortcoming forces users to reason from the perspective of absolute performance for
every performance experiment and every application construct. For the scale and
complexity of today's architectures and software systems, the volume of raw output can
easily overwhelm any user. This comparison can be tedious, difficult, and error-prone.

To address this issue, we present a new methodology and prototype system, called
performance assertions (PA), that provides this capability so that users can assert
performance properties for code constructs explicitly within their applications. The PA
runtime implicitly gathers performance data based on the user’s assertion and verifies this
expectation at runtime. By allowing the user to specify a performance expectation for
individual code segments, the runtime system can jettison raw data for successful
assertions while reacting to failures with a variety of responses. Very simply, this
approach attempts to automate the testing of performance properties of evolving complex
software systems and software performance models.

To this end, we have implemented an operational prototype for performance
assertions. Our experience with this prototype on several applications and with a variety
of response mechanisms indicates that performance assertions can improve the traditional
process of performance analysis. By providing a higher level of abstraction in the
performance analysis process, we permit the user to reason in performance models rather
than in the low-level details of instrumentation and data management. That said, we are
continuing to improve our prototype based on several observations from these
experiments. Key among these observations is the fact that users will need analytical

 0-7695-1524-X/02 $17.00 (c) 2002 IEEE

support in determining the bounds for performance assertion expressions. Also, our initial
prototype considers only serial performance metrics focused on one processor. We plan
to extend this set of metrics in the prototype to include communication, threading, I/O
activity, and a combination of these metrics.

1.1 Motivating Example
Traditionally, performance measurement and monitoring has been a multipart

process. First, users instrument their applications to capture performance data of interest,
which can present a challenge per se because a user must know what data to collect and
when to collect it. Users must balance these questions among the competing goals of low
overhead, reasonable data volume, and sufficient levels of detail. Next, the users generate
performance data from one or more experiments. Third, users analyze this raw data with
visualizations or automated tools in the hope of determining if the performance of
individual constructs satisfies their expectations. Lastly, with this information in hand,
users attempt to optimize constructs that failed their expectations and begin the process
anew.
PAPI_start(CYCLES,INSTRUCTIONS);
for (j = 1; j <= lastrow - firstrow + 1; j++)
{
 sum = 0.0;
 for (k = rowstr[j]; k < rowstr[j + 1];
 k++)
 {
 sum = sum + a[k] * p[colidx[k]];
 }
 w[j] = sum;
}
PAPI_stop(vals);
/* Analyze or store PAPI values */

pa_start (&pa, '$ipc_peak*0.5<$ipc');
for (j = 1; j <= lastrow - firstrow + 1; j++)
{
 sum = 0.0;
 for (k = rowstr[j]; k < rowstr[j + 1];
 k++)
 {
 sum = sum + a[k] * p[colidx[k]];
 }
 w[j] = sum;
}
pa_end(pa);

Figure 1: Traditional instrumentation for a
loop.

Figure 2: Specifying a performance
assertion for a loop.

For example, Figure 1 shows a sparse matrix vector multiply (SMVM) loop. To
analyze the performance of this loop for instructions per cycle (IPC), users have several
options. In this example, we use the Performance Application Programming Interface
(PAPI) library [4] to access the underlying hardware counters on the target system. This
library returns raw hardware counter values for bracketed regions of code. With each set
of values returned by the PAPI library, the application must either store this data for post-
mortem analysis or analyze it immediately at runtime. In this example, the
instrumentation does not contain any notion of how the data is to be used, so the
monitoring system must conservatively record all raw data. PAPI promotes portability for
the actual instrumentation process, but it does not address data management and
performance expectation issues.

In contrast, Figure 2 shows the same loop when annotated with performance
expectations using our performance assertions. By introducing this higher level of
abstraction into the performance analysis process, we achieve several goals. In this
example, the measurement and data collection mechanisms are no longer pertinent
because the PA runtime selects the appropriate instrumentation based on the PA
expression and, for example, some platforms use statistical techniques to estimate these
hardware values, such as Compaq’s DCPI [1]. Second, the PAs can be disabled or
removed easily. Third, as the PA is evaluated, the runtime system can purge raw data,
keeping only statistics and counts. Fourth, a compiler that recognizes PAs could optimize
the PA expression evaluation and minimize overhead due to instrumentation.

- 2 -

In summary, the overall goal of this implementation is to create a source code
annotation system for applications that allows a user to specify a performance expectation
for a given code segment. At runtime, the assertion will measure the necessary metrics,
compare them to the expectation, and, if violated, take some action (e.g., alert the user,
enable performance monitoring, adapt the current system). Performance assertions
perform three critical tasks. First, they allow the user to define a portable performance
expectation in the context of their application design while freeing them from focusing on
instrumentation. Second, PAs limit the amount of data that users must encounter during
the performance analysis process. By highlighting only those portions of the code that fail
to meet the user-defined expectation, PAs can preempt data generation before it is thrust
upon the user. Third, PAs compel users to express their expectations quantitatively with
an expression that reflects their application design, while liberating them from specific
instrumentation and portability concerns.

2 Design of Performance Assertions
The design of performance assertions has three distinct components: a performance

assertion language, source code annotations, and a runtime system. As illustrated by
Figure 3, at step , a user annotates source code with performance assertions using the
PA language. Next, at step , the user executes the annotated source code, and during
this execution the PA runtime system collects performance data with instrumentation and
evaluates the performance expectations. Finally, at step , assertions generate a variety
of responses. Assertions that pass can simply be ignored, while failures can trigger an
array of responses. For example, in a, the final PA report for the application indicates
that the assertion failed 13 of 700 invocations.

Original
Source Code

.

.

.
for (j=0; j<N; j++)
a[j] = b[j]+scalar*c[j];

.

.

.

Original
Source Code

.

.

.
for (j=0; j<N; j++)
a[j] = b[j]+scalar*c[j];

.

.

.

Annotated
Source Code

.

.
pa_start(&pa,…);
for (j=0; j<N; j++)
a[j] = b[j]+scalar*c[j];

pa_end(pa);
.
.

Annotated
Source Code

.

.
pa_start(&pa,…);
for (j=0; j<N; j++)
a[j] = b[j]+scalar*c[j];

pa_end(pa);
.
.

Annotate
Source Code

Execute
Application

Assertion failed
13 of 700 times

Assertion failed
Update logfile

Assertion failed
Enable memory

metrics

a

b

c

Figure 3: Performance Assertion Overview.

The users define their expectations in our PA language with specific source code
annotations as Figure 3 shows; this language provides access to various performance
metrics as well as key features of the architecture and user parameters. That is,
expressions can contain references to values such as $wtime (wall clock time), $nLoads
(number of memory load instructions), $nFlops (number of floating point operations),
$nL1LoadMisses (number of L1 data cache misses), $nCyclesReadStall (cycles stalled on
read memory accesses), or $nInsts (number of instructions). The PA runtime invokes the
proper instrumentation and data collection facilities for each expression. PAs can also
reference values that represent architecture characteristics, such as $fp_peak_rate
(theoretical floating point peak rate), and arbitrary application values can be
parameterized into the expression using format specifications similar to scanf [8].

- 3 -

The runtime system captures the appropriate metrics and evaluates expressions as
necessary, responding with the appropriate action when an assertion fails. The response
can take a number of forms. For instance, it can increment a counter, make a callback to a
user-defined subroutine, write the data to a log file, or drive feedback into the application
or a separate runtime system.

2.1 Performance Assertion Language
Our PA language allows a user to specify an expression that contains a variety of

tokens that represent empirically measured performance metrics, constants, variables,
mathematical operations, a subset of intrinsic operations (e.g., log, exp), and format
specifiers. Format specifiers allow the expressions to incorporate values from the
application directly.

Consider the following example expressions:

 $nInsts / $nCycles > 0.8 (1)

Expression (1) has five tokens. The left-hand side (LHS) of this expression specifies
the ratio of number of instructions completed to the number of cycles. The relational
operator tests whether the LHS is greater than the right-hand side (RHS), and in this case,
the constant 0.8. When this expression is first evaluated by the PA runtime system, it
determines that the underlying instrumentation must collect two performance metrics:
number of instructions completed (nInsts) and number of cycles (nCycles). Subsequent
invocations read these metrics from the instrumentation, instantiate the expression's
variables, and evaluate the expression.

 $nInsts / $nCycles > (0.4 * $ipc_peak) (2)

Expression (2) is very similar to expression (1); however, the RHS has been replaced
by another expression that contains an architecture-dependent constant: $ipc_peak. In
order to provide portable, architecture-independent parameterized expressions in our PA
language, we have included an array of predefined constants that demonstrate the
performance of the underlying architecture. The value for $ipc_peak is substituted into
the expression at runtime. These constants can be theoretical or empirically measured
values, such as those generated with microbenchmarks [9, 10] or machine signatures
[14]. These constants are loaded at initialization and they remain constant throughout the
application execution.

 $nInsts / $nCycles > (%g * $ipc_peak) , &x (3)

Expression (3) is very similar to expression (2); however, the RHS has been
parameterized to include values directly from the application with the format specifier %g
and the variable address &x. This capability allows users to specialize expressions for
specific parameters, such as the size of the input.

Aside from expressiveness, our design of this performance assertion language has
several goals, and we attempt to strike a practical balance among these requirements.
First, our language must have a flexible, architecture-independent syntax that allows
users to express a performance expectation for a component of their source code. With
this syntax, users can meld the performance properties in a statement that identifies their
expectations for common language and library constructs (e.g., loops, BLAS, or MPI).
Second, the language should be relatively simple to interpret, implement, and validate.
Because the PA runtime must evaluate the expressions at runtime, it is important that the
interpretation and implementation be efficient to minimize PA overhead on the
application. (We are investigating dynamic code generation as a potential solution to this

- 4 -

issue.) Third, as the earlier examples demonstrate, we need expressive power to allow
users to capture complex and important performance characteristics of their applications.
We expect the need for complex expressions to grow as users gain more experience with
assertions and as the number of performance metrics increases.

Although our current prototype is realized as a library, our language specification is
not dependent on our implementation; we plan to integrate performance assertions with a
compiler so that PAs can easily benefit from the extensive semantic knowledge of the
source code. Indeed, compilers might insert performance assertions automatically to aid
in profile-directed compilation [3, 12].

Another benefit of a language specification of performance properties is the
opportunity for optimization of the assertion expressions. We consider them portable and
flexible because they allow the performance monitoring system to select the appropriate
instrumentation and collection mechanisms. For example, two approaches to gathering
hardware metrics are sampling and counting. With performance assertions, the runtime
system can select the appropriate strategy based on the requirements of the expression.
Furthermore, the language can be optimized for the underlying monitoring system on the
target architecture, which is similar to Snodgrass’ work [15]. Although our language is
not as general as a relational query language, it does offer many opportunities for similar
optimizations.

Our current implementation relies on source code annotations in the form of library
calls to construct and evaluate performance assertions for specific code segments. As
mentioned earlier, tight integration with a compiler might pay large dividends by
allowing optimization and automatic insertion of these assertions. Currently, the
annotations delimit a code segment and an expression as Figure 2 shows.

2.2 Runtime System
In conjunction with source code annotations, our initial implementation of

performance assertions uses a runtime system to define assertions, delineate code regions,
enable instrumentation, collect data, evaluate expressions, and react to assertion results.

ipc_peak%g, &xnCyclesnInst

/ *

>

Hardware Counters Application Constant

Figure 4: Example expression tree.

As the application encounters PA annotations for the first time at pa_start, the
subroutine calls the PA runtime to take several steps to initialize the assertion. During
initialization, the PA runtime allocates and initializes memory for data storage, parses the
expression to determine which tokens represent performance metrics, creates a metric
register file that indicates which metrics the assertion must measure during every

- 5 -

invocation, and configures any necessary instrumentation. The runtime system parses the
expression to determine the necessary performance metrics to gather. Consider parsing
expression (3). Figure 4 illustrates the resulting parse tree. The operators in steps and

 work as they do in C. The terminals in step illustrate the diversity of data sources
for PA expressions. At initialization, the PA runtime scans this parse tree to determine
that it must capture two metrics from hardware counters, namely nInsts (number of
instructions) and nCycles (number of cycles) at step . The runtime stores this
information in the metric register file in the PA handle for this assertion. The runtime,
then, examines the relational operator and the RHS of the assertion expression to
determine that at step the runtime must gather a value the size of a double (%g) from
the address pointed to by &x. The runtime reads this value every time the expression is
evaluated, so it may change as the application parameters change. Finally, the runtime
parses the constant (ipc_peak) at step and recognizes that it is a constant already
defined in its internal symbol table. The runtime stores all this information in the PA
handle. At the end of initialization, the PA runtime enables instrumentation.

When the application encounters the pa_end call, it reads the metric register file to
determine which instrumentation to read and disable. It reevaluates the expression, but
this time, it substitutes the actual data values for each terminal into the expression and
generates a result. Reconsider our example in Figure 4. Prior to the expression evaluation,
the PA runtime has read the current values for nCycles and nInsts from the hardware
counters and has updated its internal metric register file. The values in this register file
include an incremental count and an accumulated count. That is, the register file contains
the number of cycles since pa_start and the accumulated number of cycles for this code
region over all previous invocations of this assertion. For the expression evaluation, the
PA runtime substitutes the incremental values for nCycles and nInsts into the
calculation. For example, it might find 10,172,045 cycles and 14,136,751 instructions.
The runtime, then, computes the result of the division: 1.39. The runtime proceeds to
calculate the RHS. It follows the pointer &x and retrieves a double value from that
address. Next, the runtime extracts the value for ipc_peak from the internal symbol table.
Assume that the product of this multiplication is 1.25. The runtime compares these two
values—1.39 to 1.25—using the greater-than relational operator to discover that the
expression is true. Therefore, the assertion is successful. On success, the runtime
increments the invocation count and the success count for this assertion, and no action is
taken. If, on the other hand, the expression evaluates to false, the invocation count is
incremented, the failure count is incremented, and an action is triggered. The PA runtime
provides a variety of responses to assertions that a user can select using the PA definition
or an environment variable. The action can be ignored, recorded to a log, trigger more
detailed monitoring, invoke a user-defined callback, or activate some corrective action,
possibly using an adaptation system like Harmony [7] or Autopilot [13]. PA actions are,
by default, counters that accumulate the number of failures for an assertion. To specify
one of alternative actions mentioned above, users simply call the pa_set_action
subroutine with the appropriate parameters after defining the assertion.

Subsequent invocations of an assertion simply enable the necessary instrumentation,
collect data from the instrumentation, evaluate the expression, and generate an answer.
Furthermore, each assertion captures statistics for the values generated from the
expressions. These statistics include minimum, maximum, and an accumulated total of all
the LHS values.

Naturally, these annotations are easily disabled both at runtime and at compile time.
At runtime, a user can disable PAs by using an environment variable or by using specific

- 6 -

PA subroutine calls in their application. At compile time, a user can disable the
annotations by using the CPP preprocessor to replace the PA statements with null
statements. Disabling PAs at compile time produces an elided version of the application
similar to the original. A promising alternative that we are beginning to investigate is to
tightly couple the insertion of performance assertions with compilation, so that the
combined system can generate assertions automatically using the additional knowledge
that a compiler supplies. In this scenario, we hope to use compiler pragmas to define
expressions and actions for application statements.

2.3 Generating Bounds
As part of the U.S. Department of Energy (DOE) Scientific Discovery through

Advanced Computation project in performance evaluation (http://perc.nersc.gov), we are
developing modeling methods that are useful in determining performance properties of a
system and that exploit the additional information acquired from performance assertions.
Clearly, one primary component of performance assertions is the ability to judge when an
assertion has failed. Our initial work exploits other performance measures such as low-
level benchmarks and machine signatures. For example, users could state in an
expression that they expect a code segment to perform equivalent to the triad benchmark,
which is part of the Stream memory suite [9]. Later, we plan to explore more automated
techniques. In one instance, the system generates a performance history for each assertion
and then compares the assertion with this statistical history across architectures.

3 Compelling Uses of Performance Assertions
Performance assertions have many compelling uses. First, assertions can highlight

performance results that do not met user-modeled expectations. Second, PAs can
highlight differences across platforms. Third, PAs can draw attention to regions of code
that have changing performance expectations as the algorithms and source code evolve.
Fourth, PAs can instantiate performance models on small regions of code, alerting users
that their modeling assumptions are invalid. Fifth, PAs can trigger a callback into the
application or adaptively select among a variety of implementations based on the PA
expression.

3.1 Experiment Platforms
We ran our tests on two IBM SP systems located at Lawrence Livermore National

Laboratory. The first machine is composed of sixteen 222 MHz IBM Power3 8-way SMP
nodes, totaling 128 CPUs. Each processor has three integer units, two floating-point
units, and two load/store units. Its 64 KB L1 cache is 128-way associative with 32 byte
cache lines, and L1 uses a round-robin replacement scheme. The L2 cache is 8 MB in
size, which is 4-way set associative with its own private cache bus. Each SMP node
contains 4GB main memory for a total of 64 GB system memory.

The second machine is composed of 332 Mhz 604e 4-way SMP nodes, totaling 1344
CPUs. Each compute node has a peak performance of 2.656 GigaOPS. The 604e
processor has one floating-point unit and one load/store unit. Its 32KB L1 cache is 4-way
associative with 32 byte cache lines, and L1 uses an LRU replacement scheme. The
processor has a 500KB L2 cache.

- 7 -

3.2 Case I: Raising Performance Exceptions
To illustrate the use of performance assertions, we demonstrate how a user can

instantiate performance expectations for a given code segment. Then, when that
expectation is violated on a different architecture, the user is immediately notified by
PAs.

for (j = 1; j <= lastrow-firstrow+1; j++)
{
 int iresidue;
 double sum1, sum2;
 i = rowstr[j];
 iresidue = (rowstr[j+1]-i) % 2;
 sum1 = 0.0;
 sum2 = 0.0;
 if (iresidue == 1)
 sum1 = sum1 + a[i]*p[colidx[i]];
 for (k = i+iresidue; k <= rowstr[j+1]-2;
 k += 2) {
 sum1 = sum1 + a[k] * p[colidx[k]];
 sum2 = sum2 + a[k+1] * p[colidx[k+1]];
 }
 w[j] = sum1 + sum2;
}

Figure 5: Unrolled by 2 version of sparse
matrix vector multiply for NAS CG.

Our focus is the NAS Benchmark CG, version 2.3. This benchmark uses a sparse
matrix vector multiply (SMVM) as illustrated for the NU version in Figure 1 and the U2
version in Figure 5. Its notorious memory access patterns generally require that on the
platform's underlying memory architecture be taken into account when designing
efficient implementations. In fact, many versions of SMVM exist, each tuned for
individual memory architectures. As developers tune this code segment, they have
expectations for this code on each architecture. Currently without PAs, there is no way
for a developer to insert his or her performance expectations into the source code.
Moreover, the only indication that this code segment is not performing well is overall
poor application performance.

SMVM VERSION POWER2 (604E) POWER3 POWER4
Not unrolled (NU) 78.43 15.24 6.11
Unrolled by 2 (U2) 84.08 15.20 5.80
Unrolled by 8 (U8) 82.53 15.03 6.00

Table 1: Performance of NAS CG with SMVM versions on example architectures.

In Table 1, our experiments show that the tuned performance of SMVM executes
quite differently on three different processors. Assumptions about performance of this
code on the PowerPC are not transferable, even though they are in the same processor
family. On the Power2, the original SMVM (NU) performs best, while on the Power3 the
U8 version performs best, and on the Power4 the U2 version outperforms the others.
More strikingly, the performance optimum is different for each processor, even though
compiled codes (without processor specific instructions) will execute on all three
processors.

Performance assertions help to solve this problem because they allow us to insert our
expectations directly into the code. First, we add performance assertions to our code with
expectations for the IBM 604e processor and then we migrate the code to the IBM Power
3 processor. These chips have different memory and functional unit structures. Using
specific information about the memory systems, a user could construct a specific
assertion expression, such as $nL1LoadMisses/$nFlops, or they could rely on common

- 8 -

performance measures, such as instructions per cycle, or even wall clock time scaled by
the number of nonzero terms in the operation, to bind their performance property to the
target processor. This flexibility allows users to construct the most appropriate expression
for their performance property without regard to the mechanics of instrumentation or data
collection. Then, when these assumptions are violated, the assertion raises a performance
exception. In this example, we found the expression $nL1LoadMisses/$nFlops, a reliable
predictor of performance of SMVM versions across our example platforms.

3.3 Case II: Validating Performance Models
High performance software usually contains models of performance. In fact, many

libraries record metrics about their performance. For example, the PETSC library [2]
allows developers to record the number of floating point operations performed during a
computational phase. As shown in Figure 6, PAs can easily validate the model by using
underlying instrumentation to check the calculation, even integrating application specific
data into the expression.

 1: pa_start(&pa, "$nFlops", PA_AEQ, "11 * %g * %g", &ym, &xm);
 2: for (j=ys; j<ys+ym; j++) {
 3: for (i=xs; i<xs+xm; i++) {
 4: if (i == 0 || j == 0 || i == Mx-1 || j == My-1) {
 5: f[j][i] = x[j][i];
 6: } else {
 7: u = x[j][i];
 8: uxx = (two*u - x[j][i-1] - x[j][i+1])*hydhx;
 9: uyy = (two*u - x[j-1][i] - x[j+1][i])*hxdhy;
10: f[j][i] = uxx + uyy - sc*PetscExpScalar(u);
11: }
12: }
13: }
14: pa_end(pa);
15: PetscLogFlops(11*ym*xm);

Figure 6: Performance model validation.

As the library evolves over time, it is ported to new architectures and is optimized
with new techniques. It is useful to validate these models against empirical data. In this
example, the library logs the number of flops performed by the doubly nested for loop
with the PetscLogFlops(11*ym*xm) subroutine. Performance assertions can help validate
this claim. At line 1, the pa_start describes the expression and delineates the beginning
of the code segment: pa_start(&pa, "$nFlops", PA_AEQ, "11 * %g * %g", &ym, &xm).
This routine takes as arguments the expression, a relational operator, and threshold or
bounds. The expression in this example is the number of floating point operations,
$nFlops, performed in the code segment. Next, the expression is compared using the
relation operator, PA_AEQ, which represents approximately equal, or, in this case, ±10% of
the threshold value (11 * %g * %g). At line 14, pa_end signals the end of the code
segment for the matching pa_start. pa_end collects all the relevant data, calculates the
expression, and compares it to the threshold using the relational operator. If this
expression fails, the default action notifies the user in a report at application termination.
Once the validation is complete, a user can disable the assertions at runtime with an
environment variable, or recompile the application to elide the PA statements with the
preprocessor.

3.4 Case III: Local Performance-Based Adaptation
Performance assertions can also change the local application state in response to the

outcome of its expression. For example, in our prototype, a PA can invoke a user-defined
function that can change the state of the application, or select among several alternative

- 9 -

http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Profiling/PetscLogFlops.html

implementations based on testing the performance of the alternatives at runtime. For
example, our experiences with a Monte Carlo simulation allow us to alter a variety of the
application-defined variables in response to performance conditions [5].

pa_t pa_smvm;
int smvm_choice = 1;
pa_start(&pa_smvm,"$nCycles/$nInsts",PAR_MINIMIZE, &smvm_choice, 3);
switch(smvm_choice)
{
 case 1:
 /* SMVM not unrolled */
 break;

 case 2:
 /* SMVM unrolled by 2 */
 break;

 case 3:
 /* SMVM unrolled by 8 */
 break;
}
pa_end(pa_smvm);

Figure 7: Performance-based adaptation example using performance
assertions.

Reconsider our example in Case I of multiple versions of SMVM. In this example,
the user selects one version of the implementation at compile time. Then, if the
performance expectation in not satisfied, PAs can notify the user, who in turn changes the
implementation, recompiles the application, and executes the code again. Indeed, in this
example, we can easily use PAs to evaluate several different versions of the
implementation and then, based on the outcome of the samples, select one
implementation for the remainder of the application runtime. To implement this strategy,
we modify the code in three ways as Figure 7 shows. First, we separate three versions of
the implementation with a conditional statement, using a global variable to select among
these versions. Then, we register this variable with the PA runtime system. Finally, we
create a PA expression that measures the quantity we are interested in minimizing along
with a range of possible choices.

Version CPI
NU 2.38
U2 2.39
U8 2.32

Table 2: Measured CPI on SMVM
implementations.

NU U2 U8 PA

R
un

tim
e

(s
ec

)

0

200
1400

1600

 Figure 8: CG performance using various SMVM
implementations including PA adaptation.

As the program executes, the PA runtime samples the performance of each
implementation using the PA expression as provided by the user. Then, after some
number of samples (e.g., in this case, 3 * 20 = 60), it selects one implementation choice
by selecting the implementation with the minimal average value of the expression across
all samples. Then, this PA disables itself and remains dormant for the remainder of the

- 10 -

application execution. Other PAs in this application operate independently. There are a
practically innumerable number of ways to adapt the application state in response to PAs.

As Figure 8 shows, our PA adaptation selects the appropriate version of the SMVM
on the NAS CG (Class B) benchmark. For this adaptation, we minimized the adaptation
expression cycles per instruction. Table 2 supplies the measured CPI for this experiment.

4 Observations
As Section 3 illustrates, performance assertions allow users to insert performance

expectations directly into their application code. During our development and testing of
the PA system, we made several important observations.

First, we believe that performance assertions are important because they permit users
to assert explicitly their performance expectations in their applications. These assertions
are then empirically verified at runtime. This is an entirely new way to think about
performance analysis. Instead of collecting volumes of performance data and then
reasoning about that data on an absolute scale, performance assertions allow users to
plant expressions around their important application constructs, and they can elect to be
notified only when the assertion is violated at runtime. Although most of our examples
focus on the SMVM operation, our intent is to demonstrate that performance assertions
are general and can be applied in a variety of situations.

Second, performance assertions depend on the availability, efficiency, and accuracy
of the underlying instrumentation. The syntax of performance assertions does not allow a
user to specify how performance data is collected; this decision remains with the PA
runtime. The benefits of this approach are that the runtime can select the most appropriate
method for the instrumentation task at hand and that the performance assertion
framework is portable across platforms. Unfortunately, instrumentation support is not
easily portable. Tools like PAPI [4] have made great strides in addressing this problem,
but microprocessors and operating systems offer a wide range of support for hardware
counter instrumentation. Also, the perturbation introduced by performance assertions
depends on efficient instrumentation. Our PA runtime does insert a small overhead for
parsing the expression, but our measurements show that this overhead scales with the
expression complexity, and it typically is a few thousand cycles.

Third, our PA language is expressive to permit users to describe any number of
expressions important to them. However, we need to provide additional support to users
for understanding how to create these expressions. Although many performance metrics
and expressions can identify performance problems, this process of developing and
testing these expressions manually can be time consuming and sometimes misleading.
Our initial work focuses on using multivariate statistical techniques to correlate
individual metrics with overall performance.

5 Related Work
Many research efforts have modeled the performance properties of applications [6,

11]. In fact, the name of performance assertions is not in and of itself novel. However,
our technique and prototype, which are novel, allow users to assert explicitly in their code
their performance properties, which can be verified empirically at runtime. In contrast to
earlier work by Perl [11], this research focuses on runtime techniques to judge if an
assertion has met its expectation. Perl's work checked for these properties in event logs,

- 11 -

not in the application at runtime. The GrADS project (http://nhse2.cs.rice.edu/grads/) is
addressing issues of application performance and performance contracts [17] on
computational grids. In a different effort, work by the APART consortium has culminated
in a performance property specification language: ASL. ASL allows developers to write
complex properties describing patterns in performance data, but current implementations
do not allow users to plant their expectations directly in their source code, where they can
be measured and verified at runtime. Also, we plan to provide users with a more general
framework for reacting to failed assertions [16]. For example, our current work allows
assertions to perform local adaptations in response to assertions [5].

6 Conclusions
Traditional techniques for performance analysis provide a means for extracting and

analyzing raw performance information from applications. Users then reason about and
compare this raw performance data to their performance expectations for important
application constructs. This comparison can be tedious, difficult, and error-prone for the
scale and complexity of today's architectures and software systems. To address this
situation, we present a methodology and prototype that allows users to assert
performance expectations explicitly in their source code using performance assertions. As
the application executes, each performance assertion in the application collects data
implicitly to verify the assertion. By allowing the user to specify a performance
expectation with individual code segments, the runtime system can jettison raw data for
measurements that pass their expectation, while reacting to failures with a variety of
responses. We present several compelling uses of performance assertions with our
operational prototype including raising a performance exception, validating a
performance model, and adapting an algorithm to an architecture empirically at runtime.

Acknowledgments
The work of Dr. Vetter was performed under the auspices of the U.S. Department of

Energy by the University of California, Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48. The work of Dr. Worley was sponsored by the Office of
Mathematical, Information, and Computational Sciences, Office of Science, U.S.
Department of Energy sponsored this research under Contract No DE-AC05-00OR22725
with UT-Batelle, LLC. Accordingly, the U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or
allow others to do so, for U.S. Government purposes. This paper is available as LLNL
Technical Report UCRL-JC-145028.

References
[1] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.-T.A.

Leung, R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl,
“Continuous profiling: where have all the cycles gone?,” ACM Trans. Computer
Systems, 15(4):357-90, 1997.

[2] S. Balay, W.D. Gropp, L. Curfman McInnes, and B.F. Smith, “Efficient
Management of Parallelism in Object Oriented Numerical Software Libraries,” in
Modern Software Tools in Scientific Computing, E. Arge, A.M. Bruaset et al.,
Eds.: Birkhauser Press, 1997, pp. 163-202.

- 12 -

[3] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, “ADIFOR -
Generating Derivative Codes from Fortran Programs,” Scientific Programming,
1:1-29, 1992.

[4] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci, “A Scalable Cross-
Platform Infrastructure for Application Performance Tuning Using Hardware
Counters,” Proc. SC2000: High Performance Networking and Computing Conf.
(electronic publication), 2000.

[5] I.R. Corey, J.R. Johnson, and J.S. Vetter, “Micro Benchmarking, Performance
Assertions and Sensitivity Analysis: A Technique for Developing Adaptive Grid
Applications,” Proc. Eleventh IEEE International Symp. High Performance
Distributed Computing, 2002.

[6] M.E. Crovella and T.J. LeBlanc, “Performance debugging using parallel
performance predicates,” SIGPLAN Notices (ACM/ONR Workshop on Parallel
and Distributed Debugging), 28, no.12:140-50, 1993.

[7] J.K. Hollingsworth and P. Keleher, “Prediction and Adaptation in Active
Harmony,” Proc. HPDC, 1998, pp. 180-8.

[8] B.W. Kernighan and D.M. Ritchie, The C programming language, 2nd ed.
Englewood Cliffs, N.J.: Prentice Hall, 1988.

[9] J.D. McCalpin, Stream Benchmarks, http://www.cs.virginia.edu/stream, 2002.
[10] P.J. Mucci, K. London, and J. Thurman, “The CacheBench Report,” University

of Tennessee, Knoxville, TN 1998.
[11] S.E. Perl and W.E. Weihl, “Performance assertion checking,” Proc. 14th ACM

Symp. Operating Systems Principles, 1993, pp. 134-45.
[12] D. Quinlan, M. Schordan, B. Philip, and M. Kowarschik, “The Specification of

Source-To-Source Transformations for the Compile-Time Optimization of
Parallel Object-Oriented Scientific Applications,” Proc. 14th Workshop on
Languages and Compilers for Parallel Computing (LCPC2001), 2001.

[13] R.L. Ribler, J.S. Vetter, H. Simitci, and D.A. Reed, “Autopilot: adaptive control
of distributed applications,” Proc. Seventh Int'l Symp. High Performance
Distributed Computing (HPDC), 1998.

[14] A. Snavely, L. Carrington, and N. Wolter, “Modeling Application Performance
by Convolving Machine Signatures with Application Profiles,” Proc. IEEE
Workshop on Workload Characterization, 2001.

[15] R. Snodgrass, “A Relational Approach to Monitoring Complex Systems,” ACM
Trans. Computer Systems, 6:157-96, 1988.

[16] J.S. Vetter and K. Schwan, “Techniques for delayed binding of monitoring
mechanisms to application-specific instrumentation points,” Proc. Int'l Conf.
Parallel Processing (ICPP), 1998, pp. 477-84.

[17] F. Vraalsen, R.A. Aydt, C.L. Mendes, and D.A. Reed, “Performance Contracts:
Predicting and Monitoring Grid Application Behavior,” Proc. GRID 2001:
Second International Workshop on Grid Computing, 2001, pp. 154-65.

- 13 -

	Introduction
	Motivating Example

	Design of Performance Assertions
	Performance Assertion Language
	Runtime System
	Generating Bounds

	Compelling Uses of Performance Assertions
	Experiment Platforms
	Case I: Raising Performance Exceptions
	Case II: Validating Performance Models
	Case III: Local Performance-Based Adaptation

	Observations
	Related Work
	Conclusions
	Acknowledgments
	References

